Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 181: 114063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448113

RESUMO

The use of infant formulas (IFs) based on hydrolyzed cow's milk proteins to prevent cow's milk allergy (CMA) is highly debated. The risk of sensitization to milk proteins induced by IFs may be affected by the degree of hydrolysis (DH) as well as other physicochemical properties of the cow's milk-based protein hydrolysates within the IFs. The immunogenicity (specific IgG1 induction) and sensitizing capacity (specific IgE induction) of 30 whey- or casein-based hydrolysates with different physicochemical characteristics were compared using an intraperitoneal model of CMA in Brown Norway rats. In general, the whey-based hydrolysates demonstrated higher immunogenicity than casein-based hydrolysates, inducing higher levels of hydrolysate-specific and intact-specific IgG1. The immunogenicity of the hydrolysates was influenced by DH, peptide size distribution profile, peptide aggregation, nano-sized particle formation, and surface hydrophobicity. Yet, only the surface hydrophobicity was found to affect the sensitizing capacity of hydrolysates, as high hydrophobicity was associated with higher levels of specific IgE. The whey- and casein-based hydrolysates exhibited distinct immunological properties with highly diverse molecular composition and physicochemical properties which are not accounted for by measuring DH, which was a poor predictor of sensitizing capacity. Thus, future studies should consider and account for physicochemical characteristics when assessing the sensitizing capacity of cow's milk-based protein hydrolysates.


Assuntos
Hipersensibilidade a Leite , Soro do Leite , Humanos , Animais , Bovinos , Feminino , Lactente , Ratos , Caseínas , Hipersensibilidade a Leite/prevenção & controle , Hidrólise , Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Leite , Imunoglobulina G , Peptídeos , Imunoglobulina E
2.
Metabolites ; 5(2): 184-91, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25838075

RESUMO

Fusarium graminearum is a ubiquitous plant pathogen, which is able to produce several bioactive secondary metabolites. Recently, the cyclic lipopeptide fusaristatin A was isolated from this species and the biosynthetic gene cluster identified. Fusaristatin A consists of a C24 reduced polyketide and the three amino acids dehydroalanine, ß-aminoisobutyric acid and glutamine and is biosynthesized by a collaboration of a polyketide synthase and a nonribosomal peptide synthetase. To gain insight into the environmental factors, which controls the production of fusaristatin A, we cultivated F. graminearum under various conditions. We developed an LC-MS/MS method to quantify fusaristatin A in F. graminearum extracts. The results showed that yeast extract sucrose (YES) medium was the best medium for fusaristatin A production and that the optimal pH was 7.5 and temperature 25-30 °C. Furthermore, production of fusaristatin A was more than four times higher in stationary cultures than in agitated cultures when F. graminearum was grown in liquid YES medium. The results also showed that fusaristatin A was only present in the mycelium and not in the liquid, which suggests that fusaristatin A is stored intracellulally and not exported to the extracellular environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...